把可视化从业者的生存现状可视化出来他们是
2024/9/23 来源:不详中科白癜风微信账号 http://www.xftobacco.com/zzbb/myjd/m/2717.html
大数据文摘作品,转载请联系zz
bigdatadigest.cn原作者
BillShander
编译团队
Aileen,蒋晔,刘小楚,姚佳灵
引言
几十年来,在数据可视化实践上进行了大量研究,包括在当今学术界和商界中进行的一系列新研究。
但是对从事这些工作的从业者自身还没有什么研究:
什么人在做数据可视化?
在哪些组织和这些组织内的哪些部门有这些专业工作?
他们在做什么类型的数据可视化,以及出于什么目的?
他们的工作是否有影响力?如果是,有什么类型的影响?
为什么其中一些人比其他人有更大的影响力——也即,什么使得他们在其工作上比其他人更成功?
随着这一领域的发展和成熟,这些问题正在(或将很快)被各地的组织机构所问到。
这项调查是开始阐明数据可视化工作状态和性质的一个尝试。在年夏季和早秋时分,我们在线收集了近份(精确地说有99份)来自数据可视化专业人士的调查报告。受访者是自我选择的,并通过社交媒体独家推广。
主要结论
1.从业者正在使用一系列广泛的难以置信的工具来完成他们的工作,与此同时,一些市场领导者也开始出现。
2.“增加了解”是数据可视化的主要目标,但除此之外,意见各不相同。
3.良好的数据和训练有素的员工是成功的关键,而在数据中“找出故事”仍然是许多人面临的一个关键挑战。
4.那些正在衡量其成果的人预计,可视化的支出会增加,近五分之一的人预计会有显著增长。
领导者VS落后者
评估调查数据最有趣的方法之一是将某些活动(在这种情况下为数据可视化)中的“领导者”与“落后者”进行比较。那些制造趋势并在其组织中有着更大影响的人与那些影响较小的人有什么不同?在这次调查中,有两个问题帮助我们区分领先者与落后者。
受访者被问及:“总体上,您所在组织的可视化数据做得有多好?”可选用的答案是从“非常差”到“很好”的五点李克特量表(LikertScale)。这个问题,显然不是“领导力”或“落后”的科学证据,但可以用来衡量一个组织对自身业绩拥有(或缺乏)的信心。这是所有以下“自信组”与“不确定组”比较的来源。这两个群体都由41个受访者所构成。
总体上,您所在组织的可视化数据做得有多好?
受访者还回答了这个问题:“如果您正在评估成果,您是否在您的可视化项目中看到ROI(投资回报率)(财务方面或者其他)?”这个问题也提供了一个从“非常积极”到“非常负面”李克特量表选项。取得“正投资回报率”(PROI)受访者是那些回答“非常积极”或“有点积极”的人,剩下的是回答“中性到负的投资回报率”(N2NROI)的人。有28名PROI受访者(其测量结果的53%)和25名N2NROI(47%)受访者。正如人们所期望的,PROI组中的75%也在自信组。N2NROI组在“自信”(44%)和“不确定”(56%)之间分布更均匀。
如果您正在评估成果,您是否在可视化项目中看到ROI(投资回报率)?(财务方面或者其他)
在“领导者”和“落后者”这两组之间有什么区别?很难得出广泛的结论。无论如何,我尽可能指出他们的不同,并给出结论。
工具!工具!更多的工具!
这项调查最令人惊讶的发现集中于所使用的工具。当被问及“贵组织用于数据可视化最常用的3个软件工具是什么?”时,答案是非常不同的。
我们得到的答案是有不止62种不同的工具被使用。并且这是在将“我们自己的平台”和“其他图像和图表”等答案汇总到一个“其他”分组中,以及将任何Adobe软件划分到一组之后的答案。
同样有趣的是,所使用工具的多样性是许多受访者所依赖的工具类型。Excel-用于计算和创建图表的电子表格,发布于30多年前–提及的次数最多(43),其次是第二组流行工具:Tableau(26),AdobeSuite(25)和D3(21)。然后最接近的是R,被提及12次。其余的大多数都只有被提及一次或者几次。
这究竟是一个有着守旧的垄断者主宰了市场份额和影响力的成熟行业?还是一个对于新工具有着足够空间来扩散及主导的不成熟行业?或者,这是一个正在成熟的行业,其中的标准正在制定中,各种公司正在营造下一个垄断者?
我认为答案是非常肯定的“是”(在一定程度来说,以上三种都对)。很难准确预测未来对数据可视化工具有着怎样的影响。传统的主导工具很难被取代。同时,新的工具又不断地出现。但在较新的工具中,Tableau和D3正在成为清晰的标准。这里还有空间给其他人分一杯羹吗?如果考虑到大量的工具在使用,毫无疑问是有的。
那么自信组和不确定组的情况又是如何呢?他们是否使用不同的工具?自信组比不确定组更多使用Tableau和Excel,而使用D3和Adobe工具的以同样大的差距少于不确定组。这究竟意味着什么?很难说。但很有意思,值得进一步调查。
与自信组和不确定组的受访者相比,PROI组和N2NROI组的受访者有不同的工具使用模式,表明可衡量的成功与信心之间存在明显的区别。例如,Tableau在两个组中的使用情况相同,其他所有三个顶级工具正在PROI组中得到更广泛的使用。那么,那些看到成功的人,更有可能使用更多的“自定义”工具,如D3和Adobe?或者他们更可能使用的顶级工具范围更大?这很难得出直接的结论,但这同样是一个值得更多研究的领域。
本工作的第一目标:增强观看者对数据的理解
人们出于各种原因而可视化数据。这并不奇怪。但令人惊讶的是(确切的说是令人欣慰),当被问到“当你的组织正在可视化数据时,你的主要目标是什么?”时,90%的受访者认为是”增加理解“。远远超过第二个回答”影响影响者“,只有40%选择了该选项。当我讲授让数据讲故事和可视化时,我认为增加理解应该是主要目标,因此很高兴看到几乎所有的同行都同意!
当您的组织正在将数据可视化时,您的主要目标是什么?(如果你在为客户提供数据可视化的机构工作,请确定其主要目标。)(选中所有适用选项。)
再一次得到非常多样的回答,多个受访者(实际上,每种情况都有超过10%的受访者)从提供的选项选择相同的关键目标。(一个例外是“接受投票”。这项调查是在总统选举期间进行的,因此也许所有的政治工作者都忙于为候选人拉票,没有回答问卷调查!)
自信组和不确定组之间的最大区别是,自信组(32%)中“提高品牌知名度”几乎是不确定组的两倍,“提高品牌知名度”很难评估。同时,与N2NROI(12%)相比,“获得媒体报道”对于PROI(36%)来说是一个更重要的目标,这很容易(因此经常)被评估。因此,与那些不切实际的人相比,寻求媒体报道的人更有可能感觉到他们获得了PROI。
成功必备因素:好的数据和训练有素的员工排名靠前
调查中的多个问题有助于确定数据可视化面对的挑战和成功的秘密。
其中最令人激动的发现之一是投资回报率。在所有评估其工作成果的受访者(仅占所有受访者的一半)中的53%表示他们看到“非常乐观”或“有点乐观”的投资回报率。只有4%的受访者看到负面的投资回报率。因此,96%的受访者表示有正的或至少中性的投资回报率。每个报告“非常乐观”的投资回报率的人都属于自信组。
什么导致成功?“好的数据”(71%),“训练有素的员工”(70%)和“正确的工具”(61%)主导了所有的回答。虽然“文化”不是多项选择中的一个选项,但它出现在“其他”选项中的手工输入中。例如,有一个人说,“有一个热情的‘数据能手’等同于从高级职员到基层人员都是‘数据可视化能手’”。
数据可视化项目成功的关键因素是什么?
有趣的是,一个类似的问题作为开放问题被提出时,得到的结果有点不同于多重选择的。在开放式回答中,工具被排到列表底部,受访者更加注重培训、人才、文化、投资回报率、数据质量和故事的讲述。
自信组(Confident)和不确定组(Unsure)解答多项选择的主要区别是,自信组中有非常高的比例的人(83%),认识到需要好的数据,相较而言,不确定组只有59%的。再次,PROI和N2NROI组与自信组(Confident)和不确定组(Unsure)有着显著不同。足足有86%的PROI组将训练有素的员工(Trainedstaff)确定为关键成功因素,而N2NPOI组仅为60%。可以理解的是,N2NROI组更可能将“足够的资金(Sufficientfunding)”(24%,而PROI组为11%)确定为关键成功因素。
当被问及“您所在的组织在可视化数据时所面临的最艰巨的挑战是什么?”,再一次,我们有多个受访者(每个组超过10%)选择每个可选答案。“找出故事(Figuringoutthe"story")”(48%),“找到时间(Findingthetime)”(41%)和“清理数据(Cleaningthedata)”(40%)领先。自信组(Confident,59%)与不确定组(Unsure,24%)相比,认为“找到时间(Findingthetime)”更难。与此同时,不确定组(Unsure)的人更纠结于找到人才(Findingthetalent,39%)和预算(Findingthebudget,29%),而自信组(Confident)分别为22%和15%。
您所在的组织在可视化数据时面临的最艰巨的挑战是什么?(选择所有适合的选项)
PROI和N2NROI组之间的最大差异又一次不同于自信组(Confident)和不确定组(Unsure)。PROI难以“找出故事来沟通(figuringoutthestoryto